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Abstract. We have studied the quantisation of point vortices in two dimensions by several 
alternative symmetrisation rules, and have found that only one rule yields a self-consistent 
quantum model. The symmetrisation rule is motivated by the attempt to construct an 
operator that represents the singular classical vorticity, and yields a quantum model which 
exhibits the effect of a finite vortex core at short distances. A generalisation of the 
Onsager-Feynman circulation theorem is obtained which reflects the idea that a vortex 
cannot be localised to within an accuracy greater than that allowed by the Heisenberg 
principle, and the combination of these two principles yields a vortex core size of the order 
of an inter-particle spacing. The model is also used to study the energy spectrum of a pair of 
interacting vortices. For vortices of equal circulation a discrete spectrum is obtained, 
reflecting the oscillator symmetry, while the energy of a pair with opposite circulation varies 
continuously with separation, reflecting translational symmetry in a fluid of infinite extent. 
In both cases the interaction energy is asymptotically logarithmic at large separations, but 
varies quadratically at small separations, reflecting the effect of a finite core size due to 
zero-point motion. The theory predicts that two vortices with opposite circulation can 
annihilate at short distances with an interaction energy that vanishes as the square of their 
separation. 

1. Introduction 

Classical models of vortices with quantised circulation (Onsager 1949) have been useful 
in understandirig many properties of bulk 4He, and have recently been used to study the 
dissipation in thin 4He films with thickness of the order of several inter-particle spacings 
(Ambegaokar et a1 1978). From a classical viewpoint the fluid particles outside the 
vortex core ( r  B a )  undergo circular motion with a speed equal to 

v = K/2Tr, (1) 

where r is the distance from the vortex and K is the circulation ( K  = h / m  for a quantised 
vortex (Onsager 1949)). Two point vortices in two dimensions ( 2 ~ )  with circulations K I  

and K Z  will have an energy given by (Onsager 1949) 

where p is the 2~ fluid density and r12 is the distance between the vortices. In the spirit 
of equation (l), equation (2a )  is valid only when the vortex cores are distinct, 1-12 B a, 
where the core size a is not predicted by the classical theory (we assume that real 
vortices have finite cores). The parameter a is generally assumed to be at least of the 
order of an inter-particle spacing a 2 (p/m)-1’2,  since this is the smallest length scale 
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available, even in the quantum many-body theory of 4He. One of the goals of the 
present work has been to show how quantisation of the classical hydrodynamic theory 
leads to a vortex core size of the order of an inter-particle spacing, even if we quantise a 
classical point vortex. There are two essential points behind this idea. First, the 
classical hydrodynamics of point vortices in 2~ can be written in Hamiltonian form, and 
the rectangular position coordinates (Xi, Y,) are (to within a constant factor) canonic- 
ally conjugate variables (4i, pi) (Onsager 1949). If we quantise the system, X, and Yi 
will become non-commuting operators which obey an uncertainty principle (Mittag and 
Stephen 1968). This means that the point vortex cannot be localised to within an 
accuracy greater than that allowed by the uncertainty principle, so that a finite vortex 
core will emerge. The smallest core size will be determined by the zero-point motion. 
These ideas were first suggested in the context of another problem (McCauley 1974), 
but were not developed at that time. The attempt to quantify these ideas leads us to the 
second point. 

Consider the velocity field due to a classical point vortex located at the point r’ 
rather than at the origin. Equation (1) is replaced by U = ~(27r)-’Ir-r’1-’, but more 
importantly u (r) satisfies the classical equation 

V ~ u ( r ) = ~ i S ( r - r ’ ) ,  (3) 
where 2 is a unit vector perpendicular to the plane of the fluid and K S ( r  - r’) = w (r, r’) is 
the vorticity or vortex density. This vortex density describes a point vortex whose 
location is precisely known. Suppose, however, that r’ is a classical random variable. 
For simplicity we can consider the case where r’ is defined by a Gaussian distribution 
with width (RMS fluctuation) (T. Then the average vorticity will be Gaussian, and the 
uncertainty in position gives rise to an effective finite core size a - (T. The details are 
given in the Appendix. Our interest at this point is directed toward the question of how 
a similar effect might arise quantum mechanically, where the vortex location r’= 
(X’, Y’) is not a classical random variable, but is defined by two non-commuting 
operators. 

Our task would seem to be simple at first sight. We can take equation (3) seriously, 
even in the quantum case where (X’, Y’) are replaced by non-commuting operators, if 
we can find an operator that represents the 2~ delta function S(r - r’). This can indeed 
be accomplished, but the resulting success is not trouble-free: the replacement of 
S(r-r’)  by an operator is not unique. This non-uniqueness seems to be due to our 
starting point, which is an attempt to quantise hydrodynamics rather than starting with 
the currently insolvable quantum many-body theory of a 4He film. If we can face and 
successfully resolve the problem of non-uniqueness, it is possible that the resulting 
quantum hydrodynamical model may be useful as a semiclassical approximation, and 
may serve as a guide for further work from the many-body viewpoint, especially since 
the problem of non-commuting vortex position variables has not been considered in 
that context. At the very least our resulting model will be conceptually superior to the 
classical point vortex, since it emerges with a statistically defined vortex core. 

We will show in 0 3 how the non-uniqueness can be resolved and how a sensible 
model can be constructed. First, we will review briefly the classical Hamiltonian 
dynamics of 2~ point vortices, since this theory is the basis for our quantum model. 
Then, after introducing the model in 8 3, we will use it to predict the energy spectrum 
and dynamics of an interacting pair of point vortices, first for a vortex pair with equal 
circulation, and then for a pair with opposite circulation. The predictions for a pair with 
equal circulation differ quantitatively from those of an earlier theory (Mittag and 
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Stephen 1968), but not qualitatively. The results for a pair with opposite circulation are 
entirely new. In 0 6 we discuss the problem of non-uniqueness further, since it is also 
the source of the quantitative discrepancy between our results and those of Mittag and 
Stephen (1968). We show that an extension of the Mittag-Stephen method to the case 
of oppositely circulating vortices yields classical point vortex behaviour as r -f 0, 
whereas our model reflects the effect of a finite core (the fluid kinetic energy vanishes as 
the vortex separation goes to zero). 

2. Hamiltonian dynamics of 2~ vortices 

The work of Kirchhoff (1883) first showed how Hamiltonian mechanics for point 
vortices in 2~ could be obtained from classical hydrodynamics. Consider an 
unbounded fluid and let K~ and (Xi ,  Yi)  denote respectively the circulation and rectan- 
gular position coordinates of the ith vortex. The velocity field of the fluid at a point r is 
defined by V . u(r)  = 0 (incompressible fluid) and by 

v x U ( f )  = i  K a ( f  -fi), (4) 
i  

where ri = (Xi, V , )  and the sum is over all vortices in the fluid. If one integrates 
(p /2 )u2( r )  (the kinetic energy density) over the area of the fluid, then, aside from 
logarithmically infinite self-energy terms, the fluid kinetic energy is (Mittag and 
Stephen 1968) 

where rij = (ri - rj( is the distance between a vortex pair. According to Kirchhoff (1883) 
the vortex dynamics will be governed by the equations of motion 

P K i i i  = aH/ayi, prciyi = -aH/axi. (6 )  
Although ( 5 )  is correct only for an unbounded fluid, the theory has been extended by 
Lin (1943) to include certain boundaries in the 2~ fluid, and Fetter (1967) has shown 
how a Hamiltonian formalism also follows for small oscillations of nearly rectilinear 
vortices in 3 ~ .  Our considerations will be restricted to the cases of an isolated vortex 
and then to a vortex pair in an unbounded film, and we will quantise equations (2) and 
(3). For an isolated vortex our quantum model predicts that (1) describes the average 
velocity outside the core, i.e. when r >> a, and that (2) describes an interacting vortex 
pair whenever r >> a, where a is the length scale determined by quantum fluctuations in 
the position of a vortex (i.e. by the vortex core as determined by the non-commuting 
operators ki and %?). However, this limiting classical behaviour is achieved asymp- 
totically very rapidly as a function of r/a,  so that our results suggest that it is a good 
approximation to use the classical model 

for attracting vortices ( K ~  = - K Z ) .  That is, a ‘soft-core’ model is predicted in contrast 
with the hard-core model used in the literature (Kosterlitz and Thouless 1973), but the 
distinction is not significant for the purpose of calculation. What is important is that 
quantisation yields a model which is essentially classical outside the vortex core, but at 
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the same time provides a definite model for the vortex core based upon quantum 
fluctuations. The detailed short-distance predictions of the model must be viewed with 
caution, but are a conceptual advance beyond the classical theory as applied to thin 4He 
films, where the vortex core size is undetermined and is introduced in an ad hoc fashion. 

3. Quantum fluctuations in the position of a vortex, and phose space quantisation 

Our considerations are motivated by attempting to use equation (3) to describe the 
velocity near a quantised vortex by replacing the 2~ delta function 8(r-r ’ )  by a 
self-adjoint operator that represents the vortex density or vorticity. This is required by 
the fact that r’ is to be replaced by an operator, and is complicated by the fact thatX’ 
and I” must be replaced by non-commuting operators A? and P such that 4 = d p ~  2 
and p^ = & 9 obey the commutation rule [tf, $3 = ih. Since the vorticity will have 
quantum fluctuations, so will the velocity, but we can define average values by taking 
expectation values of the appropriate operators. The first goal is to find the correct 
operators. 

We are required to replace the classical 2~ delta function S ( r - r ’ ) -  
S(q - 4 ‘ ) S ( p  - p ’ )  by an operator when (4’, p ’ )  + operators (4, $)f. If we Fourier- 
transform the classical delta function, 

then the most obvious correspondence S(4 - 4 ’ ) S ( p  - p ’ )  + 6 is given by simply replac- 
ing 4’ and p ‘  by tf and p^ in (8), 

. The expectation which is just the Fourier transform of the unitary operator e 
value of this operator yields Wigner’s distribution (Agarwal and Wolf 1970) for the 
vorticity, and corresponds to Weyl’s rule for forming quantum mechanical operators 
from classical functions defined on phase space (Weyll931, Agarwal and Wolf 1970). 
This method of quantisation is well known, and has been studied extensively in the 
literature (Agarwal and Wolf 1970, Srinivas and Wolf 1975). Equations (8) and (9a) 
are an example of a case where the method arises rather naturally. However, Wigner’s 
distribution is known to take negative values for certain values of the variables (4, p )  
(note that the field point in the fluid is given by r = ( p ~ ) - ” ~ ( 4 ,  p)) .  For example, the 
Wigner distribution is Gaussian for thermal and zero-point motions of an oscillator 
(Feynman 1972), but becomes negative for large 4 or p for oscillator states I I ) ,  where 1 is 
odd ( 1  is the oscillator quantum number). Since the vortex has rotational symmetry, its 
position fluctuations will be represented by oscillator states, and so we conclude that 
Wigner’s distribution is not a suitable candidate for the vortex density, which must be 
positive semi-definite (this is necessary if K > 0; if K < 0 the vortex density is negative 
semi-definite). 

Now it is well known that there are many phase space quantisation methods, so that 
the Weyl symmetrisation rule is not unique (Srinivas and Wolf 1975). This non- 
uniqueness is only one example of the non-uniqueness of quantum mechanical sym- 

t Operators are denoted by symbols with ‘hats’. 

-i.$$-ivfi 
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metrisation rules in general. These problems arise because there is a many-to-one 
correspondence between classical polynomials p "4 and self-adjoint operators which 
are polynomials of order n and m in p^ and 4 (Groenewold 1946, Shewell 1959). In 
general, there are many self-adjoint operators with the same classical limit as h -* 0. 
Because of our starting point (8), we are interested quite naturally in the predictions of 
the phase space symmetrisation rules. In particular, how many of these rules predict a 
vortex density with definite sign? There is only one symmetrisation rule that fills this 
requirement, and to illustrate this we will first discuss several alternatives. 

The non-uniqueness of quantum operators corresponding to (8) can be seen in the 
following way. Rather than the choice (9a) ,  suppose that we had made the replacement 

e-'")/2 e-i&'-inp' -iM -in6 + e-iq@ -*(e e 

in (8). Then the analogue of (9a )  would be 

which is the rule corresponding to 'standard' symmetrisation (Agarwal and Wolf 1970). 
It predicts an oscillatory Wigner-like distribution 

wo(q, p )  = J2/ti e-(qz+pz)/2* cos( P4lW (10) 

for the zero-point motion, where w0(4, p )  = <01810>, and so we discard it as a model for 
the vortex density. In general, we must consider the replacement 

( 1 l a )  i($+iv@ ei'q'+inp' - * 4 5  v ) e  Y 

where a(& q) is a sum of phase factors arising from the choice of symmetrisation rule 
(Srinivas and Wolf 1975). U = 1 corresponds to Weyl-Wigner, u = cos(,fqh/2) to 

e eza with h = (4 + i@)(2h)-"2 and Z = JIt/2(q +it). None of these gives rise to a 
positive semi-definite operator 8, but it is already known that this requirement is 
fulfilled by the rule for anti-normal ordering (Srinivas and Wolf 1975), according to 
which 

standard ordering of operators, U = e('2+n2)h/4 to normal ordering, where ei&'+i"p' + 

Y ( 1 l b )  + eza e-z*a+ - - 1 ~ 1 2 / 2 + ~ a - ~ * a +  - e  ei&s'+inp' 

which corresponds to ( 1  1 a )  with 
) = e-1z12/2 = e-('2+nwi/4 

9 t l  

Planck's constant h is important in determining the vortex core size, but we will first 
define the o erator 8 in terms of dimensionless variables (Q,P)  and dimensionless 
operators (8, p), where the latter satisfy [d, $1 = i (the original canonical variables 
4 = 6 2 and p^ = 6 9 satisfy [d, p ^ ]  = ih). Using the anti-normal ordering rule yields 
the vortex density operator 

which can be transformed into the form 
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where a = 2-l12(Q + iP) and 2 = 2-112(6 + ifi). It follows easily from (9d) (Srinivas and 
Wolf 1975) that 

(12)  
where lQ,P) is a coherent state (Klauder and Sudarshan 1968). 27r6 is therefore 
positive semi-definite since it is the coherent state projection operator. For an arbitrary 
quantum state I$), the average vortex density will be given by the rather appealing 
result 

(13) 
which is as close to a ‘Q, P-probability density’ as quantum theory will permit, and is 
explicitly non-negative. The main question is whether (13) leads to sensible predictions 
for the vortex density. Classical hydrodynamics, which must be valid asymptotically, 
demands that the vorticity must have a finite range a, so that equation (1) is valid for 
r >>a. We will show next that (13) fulfils this requirement for oscillator eigenstates, and 
that for an arbitrary oscillator state /I), the vortex core size is determined by the 
zero-point motion. 

A = (1/2r)lQ, PNQ, PI, 

w@(Q, P )  = ($PI$) = (1/2r)I(Q, P14)12, 

Evaluating (13) for oscillator eigenstates 11) yields 

wl(Q, P) = (ll&) = [(Q’ + P 2 ) ‘ / 2 r l ! 2 ’ ]  e-(Q2+p2’/2, 

which is Gaussian for 1 = 0 (zero-point motion). In the latter case the average velocityt 
is 

( v ) ~  = ( K d / 2 r r ) ( l -  e-r2/a2), ( 1 5 )  

U 2  = (Ol ( f2  + y ’̂)lO) = 2h/pK 

where 

(16) 
gives the vortex core size and is due to zero-point motion. If we assume that the 
circulation is quantised ( K  = h / m ) ,  then, since p is the mass per unit area in the 2~ fluid, 
we obtain u 2  - m / p .  Therefore the combination of Heisenberg’s uncertainty principle 
and Onsager’s circulation quantisation predicts a minimum core size of the order of an 
interatomic spacing, reflecting the atomic nature of the fluid. Note also that when r >> a 
we retrieve equation (l), while if r 4 a equation (15) becomes approximately 

v = Kdr/2ra2, (17) 

which is the classical formula for a vortex core in solid-body rotation. However, if 
a - 4  A, there is no actual rotation of fluid within the core, and the correct way to 
understand (17) is that it follows from position fluctuations of the vortext. It also 
indicates that the kinetic energy density of the fluid will vanish (rather than diverge) as 
r+O. 

The model of a quantised vortex that we have just described is closely related to 
Fetter’s (1967) model, but restricted to two dimensions. Fetter’s considerations were 
based initially upon a discontinuous distribution of classical vorticity, since that 
distribution can be interpreted as a model for the self-energy of a singular vortex (Fetter 
1967). Our average vorticity is Gaussian for the zero-point motion, and is very well 
approximated by a discontinuous distribution. However, in the 3~ model the 
parameter a can become much larger than an inter-particle spacing due to thermal 

t The details are given in the Appendix. 
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motions of the line (Fetter 1967), although not in the case of a 2~ vortex (see equation 
(20) below). It is interesting to see what will be the core size as predicted by (16) near 
the critical point for vortex pair dissociation. According to Nelson and Kosterlitz 
(1977) the superfluid density p in a thin film will undergo a discontinuous jump at the 
critical point, and the condition for the critical point is that p / T  = 
3.52 x lo-’ g cm-2 K-’. If T - 1 K, this yields a core size of the order of 4 A, not 
significantly different from the zero-temperature estimate, but this leaves unanswered 
the question of a discontinuous core size change at the critical point, and also does not 
consider the possible contributions to the core from other excitations in the fluid. 
Ambegaokar et a1 (1978) have stated that a core size of the order of an angstrom is 
consistent with the superfluid density measurements of Bishop and Reppy (1978), but 
this is not a conclusive test of the prediction. 

It is not hard to see that thermal fluctuations in vortex position are not likely to 
increase the core size significantly. For a vortex in thermal equilibrium we must 
calculate the thermally averaged vorticity, which is proportional to the Wigner-like 
distribution 

e-’H*/Z is the statistical operator, and f i s  is the self-energy operator for a vortex in a 
film of finite thickness L. If we adopt Fetter’s (1967) model for the self-oscillations, 
with which we are already in qualitative agreement, the vortex motion is represented by 
a superposition of quantised oscillations with wavelengths in the range a < A  < L, and 
the (discrete) number of such modes will be small, because L is of the order of a. For the 
purposes of illustrating the effect it is entirely sufficient to consider one mode with 
A - L - a. The resulting vortex density is Gaussian (Power 1978), 

w (x ,  y ) = K Tr(e-848/2). (18) 

w ( x ,  y) = ( K / T ~ ~ )  e-(x2+y2)/a2, 

a’ = (2h/p~)(1 (20) 

(19) 

and the corresponding vortex core size is given by 

where faw -prc2/27r whenever A -a. Since /3hw>4 whenver T <  T, (Tc is the 2~ 
vortex dissociation temperature in the 4He film (Nelson and Kosterlitz 1977)), we 
retrieve our zero-point core size as given by (16) above. In the case of bulk 4He, there 
are slow hydrodynamic modes with A - L -  1 cm (Fetter 1967), and one can see 
qualitatively from (20) that very large position fluctuations will follow, 

We will now consider the effect of uncertainty in vortex position upon the usual 
statement of the circulation theorem. Since we have a vortex whose location is 
fluctuating randomly over a small area -az  on the average, it is clear that the traditional 
statement of circulation quantisation (Feynman 1972) will not hold precisely. However, 
a reasonable generalisation is still valid. Denoting the average circulation by 

where w ( x ,  y) is the average vorticity and C is a loop enclosing the average location of 
the vortex ((X) = (Y) = 0), we obtain for a circle of radius r the circulation 

r = K ( 1  -e-‘*/,’) (22) 
whenever w(X, Y) i3 Gaussian. Classically we would have used w(X, Y) = K S ( ~ )  to 
obtain I’ = K. Equation (22) reflects the fact that the vortex has not been enclosed with 
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certainfy within our circle Cy and I ‘ / K  is the probability of finding the vortex inside C. If 
r = CO, the vortex is certainly enclosed by C and we have r(m) = K .  

For an arbitrary oscillator state, the vorticity is not Gaussian but is the 2nth 
derivative of a Gaussian, as can be seen from (14). One must ask whether such a 
distribution gives the correct normalisation of vorticity, which is to say that we have one 
vortex with circulation K somewhere in an infinite fluid. The answer here is in the 
affirmative, and is guaranteed by the general theorem (Agarwal and Wolf 1970) 

where f is the identity operator. Equation (23) is just the ‘over-completeness’ relation 
for coherent states (Klauder and Sudarshan 1968) written in terms of the dimensionless 
variables (Q, P). 

We will now turn to the task of working out the predictions of our model for a pair of 
interacting vortices. To that end we will need the general rules for phase space 
quantisation, which can be stated as follows. To each classical phase space function 
G(q, p) there corresponds a self-adjoint operator given by the following rule. First 
obtain the Fourier transform of G(4, p), 

In the ‘inverse transform’ the replacement (1 l b )  gives the operator d corresponding to 
G: 

4. Quantisation of vortices with equal drculation 

Consider a pair of vortices with equal circulation ( K X  = ~2 = K )  in an unbaunded fluid. 
We will assume K =- 0 for simplicity. If we transform from (ql ,  q2, p l ,  p z )  to ‘relative’ 
and ‘centre-of-mass’ variables (4, p ; Q,, P,), where 4 = 2-1/z(41 - q z ) ,  p = 
2-1/2(p~ - p d ,  0, = 2-’/*(41 + 42) and P, = 2-1/2(p1 + p d ,  then (4, p }  = {Q,, P,} = 1, 
while all other Poisson brackets vanish. The classical Hamiltonian H depends only 
upon the relative coordinates 4 = ./;;;;(XI - X2) and p = JPK( YX - Y2): 

H = - ( p K 2 / 4 ? r )  10g(q2+pz) (25) 

to within a constant. Because (4, p} = 1, we have the symmetry of an oscillator problem. 
In spite of the repulsive nature of the interaction, two such vortices rotate about one 
another with constant separation (McCormack and Crane 1973), where the vortex 
separation r is proportional to (42 + pZ)’/’, and the quantisation of separation follows 
immediately (Mittag and Stephen 1968). We now turn to the task of working out the 
spectrum of (25) as predicted by phase space quantisation, using anti-normal ordering 
as the symmetrisation rule. 

Since (25) depends only-upon the canonically conjugate variables (4, p), but not 
upon (Qc, P,), the operator H corresponding to (25) will be given directly by (24b) if we 
replace y(& 7) by the Fourier transform of (25). Now log r in two dimensions does not 
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have a Fourier transform in the strict sense, but we can define it formally by Laplace's 
equation 

V2H(q,  p )  = -P.2s(s)s(p), (26) 

?'(& 7)) = P K 2 ( t 2 +  V2)-l 

where V 2  = a2/aq2 + a2/ap2,  yielding 

(27) 

and 

where [d, $1 = ih. Equation (28) is logarithmically divergent when 6 = 7) = 0 (i.e. at 
infinite wavelength or infinite separation), but this divergence is a c-number; it can be 
subtracted from the operator part of (28), which is well-defined (see (31) below). 
Furthermore, this logarithmic divergence corresponds to the infinite kinetic energy of a 
classical vortex in an unbounded fluid (because it occurs for infinite wavelength), and 
occurs for the same reason that (27) cannot be interpreted literally as the Fourier 
transform of (25) (i.e. without a convergence factor). We note that, while (27) is not the 
Fourier transform of (25) in the strict sense, it can be defined as such in the theory of 
generalised functions (Shilov 1968), and according to Weyl(l931) we should not always 
expect to interpret the Fourier transform literally. By ignoring this c-number diver- 
gence we are led to a model which is superior to the classical point vortex model that we 
used as a starting point: namely, there is no divergence of (28) when 6 = 7 = 0O 

corresponding to the classical logarithmic divergence when q = p = 0 ( 5 , ~  = 00 cor- 
responds to vanishing wavelength or short distances). The latter divergence is eli- 
minated from (28) by the zero-point motion that follows from the rule [4, $3 = iA. To 
see this we must separate the operator part of (28), which is well-defined, from the 
logarithmically diver ent c-number. To this end we transform to the usual ladder 

complex variables 2 and Z* defined by 2 = (A/2)"2(7 +is). If we use 
operators h = (2A)- 172 (4 + i$) and h' = (2h)-"2(4 - i$), where [a^, $1 = 1, and to 

, (29) - z*d++rd  - - z * d +  ,rd-lrlz/2 - e  eiH+id = e 

equation (28) becomes 

Setting 2 = r e'' and expanding the operators 
(aside from the infinite c-number) 

and ezd in power series yields 

where 6 = h'd is the oscillator number operator and we have used the relation 

a+"an = A(A - 1) . . . [A - (n  - I)], (32) 

which can be proven by induction and has been quoted in the literature (Klauder 
and Sudarshan 1968). Since fill) = Ill) ,  where Il) is an oscillator eigenstate and 
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f = 0, 1,2,  . . . , we obtain for the eigenvalue El = (IIHIE) of H the result 

showing that EI is 'quadratic' in the distance (rather than logarithmic) at short distances 
( r2  - (Zld' + p^21f) = f + f is the distance squared between vortices, to within a constant), 
and we have a finite distance of closest approach when I = 0 due to zero-point motion 
(Mittag and Stephen 1968). 

We can obtain a result that is more useful than (33) by integrating the generating 
function 

l - ( l - X ) [  = 1 (If)(-l)"+'x"-' 
X 

(34) 

from x = 0 to x = 1. This yields 

EI = - ( P ~ ~ / 4 a ) [ y  + $(I + 111, (35a) 

where y is Euler's constant and $ is Euler's digamma function (Magnus et a1 1966). 
Using (3521, it is easy to obtain the asymptotic properties of the spectrum and also the 
energy level spacing. Since $(Z) -log 2 + O(l /Z)  as 121 + 00 (Magnus et uZ1966), we 
retrieve the classical logarithmic behaviour 

(36) 

in the limit of large distances r - 1''' + CO. Since $(Z + 1) - t,b(Z) = 1/Z, the energy 
level spacing is given by 

(37a) 

whenever I a 1, showing both the monotonic behaviour of El with distance as well as the 
asymptotically logarithmic behaviour at large distances. 

The 'quadratic' behaviour of El for small I has its physical basis in the nature of the 
vortex core, as given by (17): since the velocity of a vortex is h e a r  in r whenever r S a, it 
follows that the kinetic energy will be quadratic in r. 

Had we used Weyl symmetrisation rather than anti-normal ordering as our starting 
point, the Gaussian factor in (30) would be replaced by e-12'2'2, and the 
consequence would be an additional factor of 2" in (31) and (33). The analogue of 
(352) is obtained by integrating a generating function analogous to (34), and yields 

E1 - - ( P K ' / ~ T ) $ ( ~  + 1 ) - - ( p ~ ~ / 4 ~ )  log I 

Ei+l -El = - ( P K ' / ~ T ) / ( ~  + 1) 

$ ( l  + 1) + y + log 2 + - 2 

with the energy level spacing (for 1s 1) 

Therefore this model produces unphysical results in two respects: the average vorticity 
is not positive semi-definite, and the energy spectrum (356) contains a strange 
degeneracy (Ezl = E21-17 if I = 1,2,3, .  . .) which contradicts our expectation that a 
larger separation between repelling vortices ought to correspond to a lower energy. On 
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the other hand, the model given by anti-normal ordering is not only in agreement with 
classical expectations where it ought to be, but predicts an origin for the vortex core 
based upon the quantum fluctuations in position of a 'point vortex'. 

5. Quantisation of vortices with opposite circulation 

We turn now to the consideration of a pair of attracting vortices with circulations 
K I  = - ~ 2  = K > 0. The classical Hamiltonian is given by 

H = (pK2/2W) log r12, (2b) 

where q l ,  qz and p1 are the same as before, but now we have p2 = -dF yz. This 
seemingly trivial change of sign reflects a great difference in the physics of two vortices: 
classically two vortices with opposite circulation translate with constant velocity 
perpendicular to their (constant) separation (McCormack and Crane 1973), and 
quantisation will lead us to a plane wave problem rather than to an oscillator problem. 
As before, we transform to variables (4, p, Q,, P,) defined by q = 2-'/'(q1 - q z ) ,  p = 
2-1/2(pl - p z ) ,  Q, = 2-'/'(ql +qz) and P,= 2-'/'(p1 + p z ) ,  and we have {q, p} = 
{Q,, P,} = 1, while all other Poisson brackets vanish. However, whereas for the case 
K' = K~ we had q = 2 - ' ( p ~ ) ' / ~ ( x ~  -xz), p = 2-'(p~)'/~(yl-  yz) and a Hamiltonian given 
as a function of q 2 + p 2 ,  where {q,p}= 1, we now have 4 = ( ~ - ' ~ K ) ' / ~ ( X ~ - X ~ ) ,  but 
P, = (2-'p~)~''(y~ - y ~ ) ,  where {q, P,} = 0, and the classical Hamiltonian is given (to 
within a constant) by 

H(q, pc) = (prc.'/4.sr) log(qz+P:). (38) 
To obtain the quantum mechanical Hamiltonian I?, we must begin with the generalisa- 
tion of (24b) to four canonical variables, and require also the Fourier transform of (38) 
with respect to all four variables (4, p, Q,, P,). In particular, there will be a factor 
v(&, qi) with each of two unitary operators ei'441+iqi5i, but since y(&, ql, 52, qz) contains 
two delta functions (Q, and p are absent from (38)), the final result is a two-dimensional 
integral, but with a different Gaussian than in the previous case (compare with equation 
(28)): 

iee+iqPc-(tz+q2)h/~ 

2 (39) 
1 p ~ '  d t d q e  

H = - i 7 J J - ,  Z2+TZ 

where 4 and $, are commuting translation operators and (as before) we must subtract a 
logarithmically divergent c-number from the operator part of (39). We now make a 
transformation to non-self-adjoint operators 

a  ̂ = ( 2 t p Z ( 4  + G,), a^+ = ( 2 f p 2 ( 4  - G,), (40) 

but since [a^, a^'] = 0, â  and â' are not ladder operators. The remaining operations are 
the same as in 0 4, and yield 

The Hamiltonian is diagonal with respect to translation eigenstates 14, P,), where the 
eigenvalues (4, P,) of (4, $,) vary continuously from --CO to 00, yielding the distance 
r = ( p ~ ) -  as a good quantum number which varies continuously from 1/2 2 2 1/2 

(q + P,) 
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r = 0 to a. Since the energy is given by E(r)  = (4, Pc/filq, Pc) according to 

we can use the expansion for the exponential integral E l ( r 2 / a z )  (Magnus et a1 1966) to 
show (with a given by (16)) that 

E(r )  = ( p ~ ~ / 4 ~ ) [ y + l o g ( r / a ) ~ + ~ l ( r ~ / a ~ ) 1 .  ( 4 2 ~  

Equations (42a)  and (42b) suggest that, for the purpose of classical equilibrium 
statistics (Kosterlitz and Thouless 1973) and kinetic theory (Ambegaokar et a1 1978), it 
is a good approximation to replace E(r )  by the soft-core model (7)  above, where we 
count the vortices as having annihilated when r < a (note that E(0) = 0 corresponds 
physically to the absence of kinetic energy in the fluid). 

We can also obtain the quantum analogue of the classical theorem that two vortices 
with opposite circulation translate with constant velocity perpe5dic:lar -to their 
(constant) separation. To see this it is necessary only to note that XI -&ad = 0 and 
F1 - &aPc = 0, since 4 and f i C  are conserved (ii and gi are now assumed to be given in 
the Heisenberg representation). It follows directly from the Heisenberg equations of 
motion for ii and Fi that ii and Fi are functions only of the operators 4 and fit, and 
therefore are also constants of the motion (i.e. the velocity of the vortex pair is a 
constant of the motion with a continuous spectrum). Physically, these results are easy to 
understand: since we have an infinite fluid, we have continuously varying velocities due 
to translational invariance, and this means that both r and E(r )  must vary continuously 
as well. The case of a bounded fluid is certainly of interest for actual 4He films, and in 
this case it is possible that the spectrum might be discrete, since the plane wave states 
will be required to obey periodic or other boundary conditions at the edges of the film. 

6. Comparison with predictions from the spectral theorem 

We now wish to compare the results of the last three sections with predictions based 
upon a more familiar line of reasoning; namely, the quantisation of vortices via the 
spectral theorem. 

We begin with the case K~ = K~ = K.  Since d 2  + e' = fi + i, where fi is the oscillator 
number operator, if we assume that arbitrary functions of N can be defined by 

where f is the classical function of q 2 + p 2 ,  then it follows that the Hamiltonian for a 
repelling vortex pair is given by 

with eigenvalues 

E, = -(PK2/4T) hg(n + f). (45) 

This forms the prediction of what we have called the Mittag-Stephen model (Mittag and 
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Stephen 1968). In contrast, the phase space model predicts that 

E, = -(pc2/4.rr)[4(n + 1) + ?I. (35a’) 

Both (35a’) and (45) are monotonic and asymptotically logarithmic, so that in their 
gross features they do not disagree. The disagreement comes primarily at small 
distances (small n),  where neither theory can be trusted beyond question, since both are 
based upon quantising hydrodynamics. It is interesting to note that (45) would follow 
from von Neumann’s rules for a classical-quantal correspondence (Groenewold 1946, 
Shewell 1959), since those rules include the two requirements A + B  +d +$ and 
f (A)- , f (A) ,  where A and B are classical quantities, while d and 6 are self-adjoint 
operators. We will now use this rule to extend the model, and will see that the results 
become less impressive. 

First, let us ask for the operator representing the vorticity. The following reasoning 
leads to Wigner’s distribution: if (4,  p )  + (4, $), then 54 + q p  + 64 + 78 and f(54 + q p )  + 
f (54 + qb), which requires that ei(m+rlp)+ yielding Wigner’s distribution for the 
average vorticity. We rejected this distribution previously because it can become 
negative. 

Second, if we consider two vortices with K~ = - K Z ,  then according to (43) the energy 
eigenvalues are given by the classical result 

E = ( p ~ * / 4 ~ )  l01:(4~ + P:) ,  (46) 
where 4 and P, vary continuously in the range -00s q,Pc s 00, and we obtain the 
short-distance divergence of energy characteristic: of classical vortices with no finite 
core. This result is somewhat analogous to the motion of a free particle of finite mass in 
free space: in both cases the prediction of a classice.1 spectrum follows from translational 
invariance. 

We have shown that only in the case where the quantum mechanical operators 
follow from anti-normal ordering is the resulting model free simultaneously from (i) the 
physically unrealistic small-distance divergence in energy and velocity characteristic of 
a classical point vortex, and (ii) the physically unrealistic occurrence of negative 
densities. The result (12) suggests that it may be possible to develop the theory entirely 
from the coherent state formalism without reference to phase space quantisation, but 
we have not pursued this. 

7. Summary 

We have shown that it is possible to start ftom the classical canonical dynamics of 20 
point vortices and use a particular symmetrisation rule to construct a quantum model of 
point vortices which is free from the classical short-distance divergences in energy and 
velocity. This was accomplished by constructing an appropriate operator to represent 
the vorticity, or vortex density, and led to a theory where the quantised point vortex has 
a ‘core’ because of the uncertainty principle. We have shown how the Onsager- 
Feynman circulation quantisation theorem fits into our picture via a simple generalisa- 
tion, and how the combination of Heisenberg’s uncertainty principle and Onsager’s 
circulation quantisation predicts a minimum core size equal to an inter-particle spacing, 
reflecting (even in quantised hydrodynamics) the true atomic nature of the fluid. 

We have calculated the energy spectrum for a pair of vortices and have shown (in 
qualitative agreement with Mittag and Stephen) that it is discrete for vortices of equal 
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circulation. For vortices of opposite circulation we have obtained the entirely new 
prediction of a continuous spectrum. In the former case two vortices have a distance of 
closest approach dictated by the zero-point motion, whereas in the latter case the 
vortices may come together and annihilate (vortices with r 6 a may be counted as 
having annihilated) with vanishing fluid kinetic energy. 

For the isolated vortex we showed how the zero-point motion of a vortex leads to a 
Gaussian distribution of vorticity, a finite vortex core size, and an average velocity that 
vanishes (rather than diverging) near the average position of the vortex. This result was 
used to explain the absence of a logarithmic divergence at short distances in the energy 
of an interacting vortex pair. 
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Appendix 

Consider a point vortex located at r‘: 

KS(r - r’), (All  v *= -  2 

where * is the stream function. If r’ is subject to a Gaussian noise source, then the 
average stream function is given by solving 

v2(*) = - (K/wa2) e-r2’a2 = -w(r) .  (A21 

The solution can be written in the form 

(*(r))= -(1/2.n) G(r, r’)w(r’) dr’, 

where G(r, r’) = -1oglr - r’l, and we will evaluate (A3) by using the expansion 

It follows after a few manipulations that 

and since ve = -a+/ar, we obtain the result 

which was quoted in the text. 
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